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Abstract 

The problem of estimation of entropy functional of probability densities were on lime 
light in the machine learning, information theory and statistics communities. Kernel density 

plug- in estimators are functions that are simple in design, easy to implement and widely used for 
estimation of entropy.  This paper proposes a plugin-entropy estimator which is based on renyi 

entropy and discusses the merits.  
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Introduction 

The analysis of distributions is 

fundamental in machine learning and 
statistics.  Algorithms in these fields rely on 
information theoretic approaches like 

entropy, mutual information and Kullback–
Leibler divergence.  

Non-linear entropy functionals arise 

in applications like machine learning, 
mathematical statistics, and statistical 

communication theories. Important 
examples include Shannon and Renyi 
entropies. Entropy based applications 

include image registration and texture 
classification, ICA, anomaly detection, data 

and image compression, testing of statistical 
models and parameter estimation.  

In these applications, the functional 
of interest must be estimated empirically 

from sample realizations of the densities 

underlying. Several estimators of entropy 
measures have been proposed for general 
multivariate densities. The list include 

consistent estimators based on histograms, 
kernel density plug- in estimators, entropic 

graphs, gap estimators and nearest neighbor 
distances. Kernel density plug- in estimators 
are simple, easy to implement, 

computationally fast and therefore widely 
used for estimation of entropy. However, 

these estimators suffer from mean squared 
error (MSE) rates which typically grow with 
feature dimension d as O(T−/d), where T is 

the number of samples and γ is a positive 
rate parameter. 

In non-parametric statistics, a kernel 

is a weighting function used in non-
parametric estimation techniques. A 
generalization of the individual data-point 

feature mapping done in classical kernel 

https://en.wikipedia.org/wiki/Non-parametric_statistics
https://en.wikipedia.org/wiki/Non-parametric
https://en.wikipedia.org/wiki/Non-parametric
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methods.   

 Kernels are used in kernel density 

estimation to estimate random variables 
density functions, or in kernel regression to 
estimate the conditional expectation of a 

random variable. Kernels are also used in 
time-series, in the use of the periodogram to 

estimate the spectral density where they are 
known as window functions. An additional 
use is in the estimation of a time-varying 

intensity for a point process where window 
functions (kernels) are convolved with time-

series data. 

In functional analysis (a branch of 
mathematics), a reproducing kernel 

Hilbert space (RKHS) is a Hilbert space 

associated with a kernel that reproduces 
every function in the space or  every 

evaluation functional is bounded in RKHS. 
The RKHS reproducing kernel was first 
introduced in the 1907 work of Stanisław 

Zaremba concerning boundary value 
problems for harmonic and biharmonic 

functions. James Mercer also at the same 
time examined functions that  satisfy the 
reproducing property in the theory of 

integral equations. The idea of the 
reproducing kernel remained unexplored for 

nearly twenty years The subject was 
eventually systematically developed in the 
early 1950s by Nachman Aronszajn and 

Stefan Bergman. 

The kernel of a reproducing kernel 
Hilbert space is used in the suite of 

techniques known as kernel methods to 
perform tasks such as statistical 

classification, regression analysis, and 
cluster analysis on data in an implicit space. 

This usage is particularly common in 

machine learning. 

These spaces have wide applications, 
including complex analysis, harmonic 
analysis, and quantum mechanics. 

Reproducing kernel Hilbert spaces are 
particularly important in the field of 

statistical learning theory because of the 
celebrated Representer theorem which states 
that every function in an RKHS can be 

written as a linear combination of the kernel 
function evaluated at the training points. 

This is a practically useful result as it 
effectively simplifies the empirical risk 
minimization problem from an infinite 

dimensional to a finite dimensional 
optimization problem.  

Density estimators  

The plug- in estimators defined above can be 

obtained by using any density estimator.  
commonly, kernel widths must also be 

specified when running a non-parametric 
estimation.  Some popular examples are the 
following:  

1. Kernel Density Estimator (KDE) 

Kernel density estimation takes the 

approach of estimating density at a given 
point using a kernel K with bandwidth 

parameter h to form a weighted average 
using other points from the sample. 
Intuitively, the points that are closer to the 

point whose density is being estimated will 
have a higher contribution to the density 

than points that are further away. The 
selection of the kernel and the bandwidth 
parameter adjust the characteristics of this 

relationship. 

https://en.wikipedia.org/wiki/Kernel_density_estimation
https://en.wikipedia.org/wiki/Kernel_density_estimation
https://en.wikipedia.org/wiki/Kernel_density_estimation
https://en.wikipedia.org/wiki/Random_variable
https://en.wikipedia.org/wiki/Density_function
https://en.wikipedia.org/wiki/Kernel_regression
https://en.wikipedia.org/wiki/Conditional_expectation
https://en.wikipedia.org/wiki/Time-series
https://en.wikipedia.org/wiki/Periodogram
https://en.wikipedia.org/wiki/Spectral_density
https://en.wikipedia.org/wiki/Window_functions
https://en.wikipedia.org/wiki/Point_process
https://en.wikipedia.org/wiki/Functional_analysis
https://en.wikipedia.org/wiki/Mathematics
https://en.wikipedia.org/wiki/Hilbert_space
https://en.wikipedia.org/wiki/Stanis%C5%82aw_Zaremba_%28mathematician%29
https://en.wikipedia.org/wiki/Stanis%C5%82aw_Zaremba_%28mathematician%29
https://en.wikipedia.org/wiki/Stanis%C5%82aw_Zaremba_%28mathematician%29
https://en.wikipedia.org/wiki/James_Mercer_%28mathematician%29
https://en.wikipedia.org/wiki/Nachman_Aronszajn
https://en.wikipedia.org/wiki/Reproducing_kernel_Hilbert_space
https://en.wikipedia.org/wiki/Reproducing_kernel_Hilbert_space
https://en.wikipedia.org/wiki/Reproducing_kernel_Hilbert_space
https://en.wikipedia.org/wiki/Kernel_methods
https://en.wikipedia.org/wiki/Statistical_classification
https://en.wikipedia.org/wiki/Statistical_classification
https://en.wikipedia.org/wiki/Regression_analysis
https://en.wikipedia.org/wiki/Cluster_analysis
https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Complex_analysis
https://en.wikipedia.org/wiki/Harmonic_analysis
https://en.wikipedia.org/wiki/Harmonic_analysis
https://en.wikipedia.org/wiki/Harmonic_analysis
https://en.wikipedia.org/wiki/Quantum_mechanics
https://en.wikipedia.org/wiki/Statistical_learning_theory
https://en.wikipedia.org/wiki/Representer_theorem
https://en.wikipedia.org/wiki/Empirical_risk_minimization
https://en.wikipedia.org/wiki/Empirical_risk_minimization
https://en.wikipedia.org/wiki/Empirical_risk_minimization
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2. KNN Estimator 

KNN density estimation at a point x 

follows by obtaining n samples from a 
distribution and computing the volume V  
needed to encapsulate k nearest points to x 

and then taking the ratio 

The mean square error of the Kernel Density 
Estimator decomposes into a Bias and a 

Variance term: 

The bandwidth parameter  may be selected 
to balance the bias-variance tradeoff . One 

strategy would be to set the derivative of the 
sum equal to 0 and solve. 

Density Estimation: 

The embedding of distributions into 
infinite-dimensional feature spaces can 

preserve all of the statistical features of 
arbitrary distributions, while allowing one to 

compare and manipulate distributions using 
operations such as inner products, distances, 
projections, linear transformations, and 

spectral analysis.  This learning framework 
is very general and can be applied to 

distributions over any space on which a 
sensible kernel function (measuring 
similarity between elements) may be 

defined. However, to estimate these 
quantities, one must first either perform 

density estimation, or employ sophisticated 
space-partitioning/bias-correction strategies 
which are typically infeasible for high-

dimensional data.  

Commonly, methods for modeling 
complex distributions rely on parametric 

assumptions that may be unfounded or 
computationally challenging (e.g. Gaussian 

mixture models), while nonparametric 

methods like kernel density estimation or 
characteristic function representation break 
down in high-dimensional settings.  

Advantages: 

Methods based on the kernel embedding of 
distributions sidestep these problems and 
also possess the following advantages: 

 Data may be modeled without 

restrictive assumptions about the 
form of the distributions and 

relationships between variables  

 Intermediate density estimation is not 

needed  

 Practitioners may specify the 

properties of a distribution most 
relevant for their problem 
(incorporating prior knowledge via 

choice of the kernel)  

 If a characteristic kernel is used, 

then the embedding can uniquely 
preserve all information about a 

distribution, while thanks to the 
kernel trick, computations on the 
potentially infinite-dimensional 

RKHS can be implemented in 
practice as simple Gram matrix 

operations  

 Dimensionality- independent rates of 
convergence for the empirical kernel 

mean (estimated using samples from 
the distribution) to the kernel 

embedding of the true underlying 
distribution can be proven.  

 Learning algorithms based on this 

framework exhibit good 
generalization ability and finite 

sample convergence, while often 
being simpler and more effective 
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than information theoretic methods  

Learning via the kernel embedding of 

distributions offers a principled drop- in 
replacement for information theoretic 
approaches and is a framework which not 

only subsumes many popular methods in 
machine learning and statistics as special 

cases, but also can lead to entirely new 
learning algorithms. 

Entropy : 

Entropy is a measure of unpredictability or 

information content. Entropies quantify the 
diversity, uncertainty, or randomness of a 
system. Ross Quinlan developed an 

algorithm based on Hunt’s theory called ID3 

( Interactive Dichotomizer 3), in which he 

used Shannon’s entropy as a criterion for 
selecting the most significant / 
discriminatory feature:  

The Shannon Entropy is given by 

 

The Rényi entropy generalizes the 

Shannon entropy. The Rényi entropy is 
named after Alfred Renyi and is defined as 

The Rényi entropy of order , where 

and , is defined as 

 

Here, is a discrete random 

variable with possible outcomes 

and corresponding probabilities 

for , and 
the logarithm is base 2. If the probabilities 

are for all , then 

all the Rényi entropies of the distribution are 

equal: . In general, for 

all discrete random variables , is 
a non- increasing function in . 

Characteristics:  

 As α approaches zero, the Rényi entropy 

increasingly weighs all possible events more 
equally, regardless of their probabilities. In 

the limit for, the Rényi entropy is just the 
logarithm of the size of the support of X. 
The limit for equals the Shannon entropy, 

which has special properties. As approaches 
infinity, the Rényi entropy is increasingly 

determined by the events of highest 
probability. 

Non parametric Entropy Estimators  

The primary variable parameters of the 
entropy estimator that can be user defined or 

are a function of the problem at hand are the 
following 

 1. N: The number of data samples or 

exemplars 

2. σ: The kernel size for the Parzen PDF 
estimate 

3. M: The dimension of the dataset 

4. d: A measure of the extent (or variance) 

of the data 

The kernel(Parzen) estimate of the 
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Probability Density Function using an 

arbitrary kernel function κσ(.) is given by 

 

Where σ is the kernel size or bandwidth 

parameter 

Plug-In Estimates for Entropy 

The plug- in entropy estimates are obtained 
by simply inserting a consistent density 

estimator of the data in place of the actual 
PDF in the entropy expression 

Four types of approaches could be followed 
when using a plug- in estimate.  

 integral estimates, evaluates exactly 
or approximately the infinite integral 

existing in the entropy definition.  

 resubstitution estimates, further 
includes the approximation of the 

expectation operator in the entropy 
definition with the sample mean.  

 splitting data estimate, and is similar 
to the resubstitution estimate, except 

that now the sample set is divided 
into two parts and one is used for 
density estimation and the other part 

is used for the sample mean.  

 cross-validation estimate, uses a 

leave–one–out principle in the 
resubstitution estimate. The entropy 

estimate is obtained by averaging the 
leave-one-out resubstitution 
estimates of the dataset.  

The key difference between the Re-

substitution estimate and the 

Splitting Data Estimate is that the 

splitting estimate sums over different 
samples than the ones used for 
estimating the density  

Non parametric Estimator for α-Renyi’s 

Entropy was proposed by J.C. Principe as   

 

Where     is the kernel function.  

 This kernel function has to obey the 

following properties 

1.    2. 
 3. 

motivated by the above aspects, we designed 

a kernel which satisfies the conditions and 
will be able to provide better classification 
for some standard datasets. We present the 

performance of our kernel against the 
regular entropy based classifier (ID3). The 

UCI Machine Learning Repository Standard 
Datasets are taken for evaluation.  

The Percentage of Correct Classification is 
as follows: 

Table -1 Percentage Correct 

Data Set NRC ID3 

Monks-Prob -1- Test 49.07 5.09 

Monks-Prob -1- Train 54.84 29.84 

Monks-Prob -2- Test 49.07 10.88 

Monks-Prob -2- Train 47.34 35.50 

Monks-Prob -3- Test 49.07 4.86 
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Monks-Prob -3- Train 51.64 31.97 

Nursery 97.58 98.19 

Solar-Flare -1 97.83 95.36 

Solar-Flare -2 98.97 98.69 

Spect-Test 69.52 57.22 

Spect-Train 63.75 52.50 

 

Fig 1. Percentage Correct    Proposed 
Classifier-1 (NRC)    vs  ID3  

Table- 2 Mean Absolute Error 

Data Set NRC  ID3 

Monks-Prob -1- Test 0.5000 0.9431 

Monks-Prob -1- Train 0.4955 0.6705 

Monks-Prob -2- Test 0.5000 0.8456 

Monks-Prob -2- Train 0.5002 0.5884 

Monks-Prob -3- Test 0.5000 0.9484 

Monks-Prob -3- Train 0.4996 0.6455 

Nursery 0.0057 0.0018 

Solar-Flare -1 0.0424 0.0405 

Solar-Flare -2 0.0056 0.0050 

Spect-Test 0.3777 0.4228 

Spect-Train 0.4355 0.5047 

 

Fig 2. Mean Absolute Error:     Proposed 

Classifier-1 (NRC)    vs  ID3  

Conclusion: 

For all data sets the Decision tree 
constructed with our proposed Non- 

parametric kernel based entropy performs 
much better than regular Decision tree 
classifiers based on shanon entropy.  Out of 

the 11 datasets we tested in 10 data sets our 
classifier was worked better than the ID3 in 

percentage of correct classification. The 
Mean Absolute Error was also very low 
compared to ID3 in 8 cases out of 11 

datasets. 
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